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This paper presents results obtained from a numerical solution to a stream 
function-vorticity formulation of the Navier-Stokes equations for the flow around a 
circular cylinder in planar oscillating flow at small Keulegan-Carpenter numbers 
(KC) in the subcritical Reynolds number (Re) range. The equations are solved by 
finite-difference methods. For very small KC (< l) ,  the numerical results coincide 
with analytical solutions. As KC is increased, the incipient separation and instability 
leading to an asymmetrical flow with vortex shedding are predicted. Computed flow 
fields at small KC values are compared to flow visualizations, and good agreement is 
found for moderate 8-values ( x 250). The well-documented flow regimes with the 
transverse vortex street, single-, double- and three-pair shedding, are predicted by 
the model. Although the flow is not fully resolved for the highest Re values, 
comparisons of calculated drag and inertia coefficients with experimental data 
for three different values of the frequency parameter /? in the range 196-1035 
for 0 < KC < 26 show good agreement. 

1. Introduction 
The classical fluid mechanics problem of flow around a circular cylinder in a steady 

flow has been studied extensively using numerical methods. This paper addresses the 
situation in which the ambient flow is a planar oscillatory flow with a high frequency 
such that the Keulegan-Carpenter number (KC) is small. KC is defined by 

urn T K C = -  
D '  

where D is the cylinder diameter, Urn the velocity amplitude, and T is the period of 
oscillation. The associated Reynolds number is 

R e = - ,  urn0 
V 

v being the kinematic viscosity of the fluid, and the frequency parameter, 8, is given 

Re D2 
KC vT' 

$=-=- 

In practice, this problem has interest in connection with hydrodynamic forces on, 
and damping of, large cylindrical elements in offshore structures subjected to the 
action of waves. When KC is small, the member is mainly subjected to inertia forces, 
but the drag force determines the hydrodynamic damping of flexible structures. 
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Hence, the drag force is very important, even though it is insignificant as a direct 
force acting on a fixed structure, since it will control the vibration amplitude. As KC 
increases, the drag force will also become important as a direct force. At KC x 20 the 
inertia and drag forces are equal in magnitude. 

Under real conditions, the structural members may be covered by marine fouling 
and the flow velocities will be high such that the flow is turbulent. In this study, only 
subcritical flpw will be considered. The prediction of turbulent flow will be dependent 
on the construction of a suitable turbulence model and is beyond the scope of the 
present paper. 

Most numerical studios of the steady flow past a circular cylinder have dealt with 
the problem in two dimensions owing to the limitations in available computer 
resources: Notwithstanding the fact that this flow is highly three-dimensional even 
at low Reynolds numbers (Williamson 1989), considerable insight has been gained 
from the two-dimensional simulations. In  analogy, the present two-dimensional 
flows around a circular cylinder in oscillating flow are unlikely to be realizable, but 
they do exhibit many of the important intrinsic features found in the similar three- 
dimensional flow and are therefore considered worth computing. 

The flow at very small KC has been studied analytically first by Stokes (1851) and 
then by Wang (1968) who developed an asymptotic theory assuming that the flow 
remains attached. It is well established, however, that as KC is increased, the flow 
will separate and eventually become asymmetrical (Sarpkaya 1986 and Bearman 
et al. 1985). Honji (1981) made flow visualizations which showed that a three- 
dimensional instability develops at small KC. This instability is probably important 
for the drag forces (Sarpkaya 1986), which means that two-dimensional calculations 
cannot be expected to conform with the experiments when the Honji instability is 
present. 

Experimental investigations of the oscillatory flow around a circular cylinder at 
small KC have shown that the flow can be classified into a number of different flow 
regimes governed mainly by KC and with a weak dependency on Re (Bearman et al. 
1981 ; Williamson 1985; Sarpkaya 1986). At KC < 1, the flow remains symmetrical, 
attached, and two-dimensional. As KC is increased from x 0, the flow will become 
asymmetrical at  KC x 2-3. After that the flow will pass through (in the KC sense) a 
number of well-defined vortex shedding patterns corresponding to an increasing 
number of vortices being shed in each cycle of oscillation. 

A few attempts have been made to study the present two-dimensional flow by 
Eulerian finite-difference solutions to the Navier-Stokes equations using the 
primitive variables. Baba & Miyata (1987) have presented two calculations for 
KC = 5 and 7 at  Re x lo3. Although physically unrealistic, the flow was symmetric 
in both simulations. Murashige, Hinatsu & Kinoshita (1989) have used a similar 
method to analyse three cases (KC = 5, 7 and 10) at the higher Re value of around 
lo4. The flow was perturbed by artificial means to trigger an asymmetry. At  KC = 
10, a transverse vortex street appeared, in agreement with experimental observations 
by for example Williamson (1985). 

Mixed Eulerian-Lagrangian discrete-vortex methods have been used by Stansby 
& Smith (1989), Graham & Djahansouzi (1989), and Skomedal, Vada &' Sortland 
(1989) to compute the two-dimensional flow. The two first studies concentrated on 
the region 0 < KC < 6. Calculated force efficients in the Morison equation have been 
found to compare well with experimental data. Skomedal et al. did calculations up 
to KC = 22.5. Furthermore they considered a single cylinder as well as a two-cylinder 

' 
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FIGURE 1.  Definition sketch. 

configuration. Again good agreement between measured and calculated forces was 
observed. 

This paper presents solutions to the stream function-vorticity formulation of the 
NavierStokes equations obtained by an Eulerian finite-difference method. In 
addition to providing new insight into the flow, this study is also complementary to 
the previous studies made using the finite-difference methods as well as the vortex 
methods. 

Emphasis is placed on the analysis of subcritical flows in the region for which 
KC < 26. It is assumed that the boundary layers remain laminar. This assumption 
is valid at least for the smaller KC, whereas the present calculations are not fully 
resolved for the highest values of Re (and thus KC).  The results are, however, very 
useful for the understanding of the physics of the flow. The numerical results will be 
checked against flow visualizations and force measurements. When possible, a 
comparison will be made with alternative numerical solutions as well. 

The issues of separation inception and onset of asymmetrical flow are addressed 
first. Then the symmetrical flow regime at very small KC is discussed. Finally, the 
results in the asymmetrical flow regimes at larger values of KC are presented. 

2. Theory 
2.1. The equations 

Consider a two-dimensional flow field which is described in a polar coordinate system. 
The geometry is depicted in figure 1. The velocities in the r*- and 8-directions are 
denoted V,* and V z ,  respectively. A stream function, $*, is defined by the relations 

The vorticity is defined as 

By cross-differentiation of the NavierStokes equations, thus eliminating the 
pressure from the equations, the vorticity transport equation is obtained : 
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in which v is the kinematic viscosity of the fluid. When the velocities are expressed 
as derivatives of the stream function, the continuity equation appears as a Poisson 
equation for $*. 

In order to examine cases with an unsteady external flow field, it is convenient to 
separate the stream function into two parts: 

$* = $,* ++:. (6) 
$: is the stream function due to some prescribed externally driven potential flow 
field (e.g. oscillatory motion) and it satisfies by definition the homogeneous version 
of (5)’ i.e. the Laplace equation. $: is the stream function which may be interpreted 
as a correction to $: due to the viscosity of the fluid. $: has to satisfy the Poisson 
equation (5 ) .  

The following dimensionless variables are introduced : 

where R is the cylinder radius. 
The r-coordinate is strained using a logarithmic transformation in order to resolve 

the large gradients near the cylinder surface. The equations will then be formulated 
in a (2’8) log-polar coordinate system in which z is given by 

r = ez-a (8) 
and a is a straining parameter. For a = 0, this transformation defaults to the 
logarithmic straining used by Braza, Chassaing & Ha Minh (1986) and Borthwick 
(1986). The introduction of the constant a makes it possible to have a denser 
distribution of computational points close to the cylinder surface without increasing 
the total number of grid points. Recently Stansby & Smith (1989) has used a similar 
transformation. 

The governing equations then read 

a ez-a 
ez ez 

A ( z )  = ez(ez-a), B(z) = -, C(z) = -. 

The dimensionless velocities are given by 

( l la-c)  

and 
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2.2. Boundary and initial conditions 

The computational domain will be the area bounded by the cylinder surface and a 
circular boundary at z = z,. The boundary conditions a t  the outer boundary of that 
area are chosen as 

The proper formulation of these boundary conditions has been subject to many 
discussions in the literature. A careful choice of boundary conditions is a prerequisite 
for the numerical model to give useful results. The present problem is that  an 
unbounded domain must be approximated by a finite computational domain. Some 
researchers have used (14) inside the wake region and matched to the Oseen solution 
outside the downstream wake. This procedure may not be applicable to oscillatory 
flow in which the wake is not confined to an area downstream. Borthwick (1986) has 
compared the two conditions and found practically no difference provided that z ,  is 
about 80R or more. The present study is concerned with oscillatory flow, in which 
case the generated vorticity will remain within a limited distance from the cylinder, 
and thus the problem of the outer boundary is assumed not to be critical. 

The boundary condition for $, on the cylinder surface is derived from the no-slip 
and impermeability conditions such that 

(15) ?kv(zo, 6 ,  t )  = v,(zo, 0, t )  = vs(zo,e,  t )  = 0 

zo is the cylinder surface coordinate. The corresponding condition for w is obtained 
by writing the stream-function equation (10) on the cylinder surface : 

The initial conditions for a time-dependent problem are those of a potential flow 
field. This means that initially a t  t = to the vorticity and the stream function $v are 
zero everywhere, and the stream function $, takes its well-known solution 

The free-stream velocity Um(t) is dependent only on time. It takes the value of unity 
for a uniform flow case. In oscillatory flow Urn is 

U,(t) = sin (nt/KC). (18) 

It is convenient to introduce the phase angle g5 = Ict/KC. We shall refer to this angle 
in radians or degrees. 

3. The numerical method 
In  the numerical solution, (9) and (10) are assumed to be decoupled. Each equation 

is solved once every time step as the solution is advanced in time. We only have to 
solve the equation for $v, since the solution for 4, is known a priori. 
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FIGURE 2. Finite-difference mesh. N points in the @direction and M points in the z-direction. 

3.1. The vorticity transport equation 

The vorticity transport equation is discretized in space in the finite-difference grid 
depicted in figure 2. An AD1 method which decouples the z- and @directions is 
employed. Borthwick (1986) described the method in detail when using central 
differencing on all terms including the advective terms. In the present study it was 
found that this approach often leads to the well-known instabilities at the highest 
resolvable wavenumbers. Such instabilities can be avoided by introducing the hybrid 
scheme (see Patankar 1980) in which an upwind differencing is used for the advective 
terms when advection is dominating over diffusion, i.e. when the PBclet number or 
cell Reynolds number, defined as 

UAx 
P e = - ,  

V 

is larger than a prescribed value. Ax is the grid spacing, and U is the local velocity. 
According to Patankar, Pe 2 2 is a reasonable choice. When Pe < 2, central 
differencing is used. For details about the AD1 method, see Borthwick (1986). The 
extension to the present hybrid scheme is straightforward. 

As argued by Leonard (1979) this could be a questionable approach. The 
dampening of the instabilities at the highest wavenumbers in the hybrid scheme is 
due to the artificial or numerical viscosity inherent in the scheme. Therefore we shall 
examine the possible effects of the numerical viscosity on the results by successive 
grid refinement in $6.2.1. 
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3.2. The stream-function equation 
A Fourier series method is employed for the Poisson equation for @.,. Assume that 
9, and w can be expressed as Fourier series in the &direction : 

N/2-1 

$&, 0)  = h0 + C [ak cos (kB) + b, sin (ke)] + aN12 cos (pe), (20a) 
k-1 

N/2--1 

o ( z ,  0)  = go + [ck cos (k0) +dk sin (ke)] + c ~ , ~  cos (ifle). Gob) 
k-1 

The component k = corresponds to the highest resolvable wavenumber in the 
grid. (a,(z), b,(z)) and (c,(z),d,(z)) are the Fourier coefficients for $., and w ,  
respectively. They are a function of z. k is the wave (or mode) number. 

The coefficients (c,(z), d,(z)) can be found from the known o-field by a forward FFT 
transformation. Substituting (20) into (10) and using orthogonality relations, one 
can obtain N ordinary differential equations for the N Fourier coefficients (a&), 
b k ( 4 )  : 

d2a, da 1 
dz dz C(z) 

C(z)T+B(z )A- -k2ak  = - A ( z ) c , ;  k = 0, ...,w, 

(21 b )  
d2b db 1 
dz dz C(z) 

C(z)<+B(z)  t-- k2bk = - A ( z )  dk ; k = 1,. . . , !jN- 1. 

Owing to the transformation given by (8) it is not possible to use Fourier transforms 
in the z-direction. Instead, the N equations are discretized in the z-direction using 
second-order-accurate central differences. This leads to a system of linear equations 
for each mode. Inversion of the tridiagonal matrices is performed efficiently using the 
double-sweep algorithm. 

When the Fourier coefficients have been determined, the new @.,-field is obtained 
by inverse Fourier transformation. To obtain the total @, the appropriate @, given 
by (17) is added to $,. 

3.3. Calculation of pressure and forces 

The pressure is not calculated explicitly in the @.-o formulation, but has to be found 
by integration of the momentum equations. Only the surface pressure is of interest 
in the present paper because it enters the force calculation. The tangential 
momentum equation written for the cylinder surface can be reduced to 

The pressure is made dimensionless by pV,. Integration of (22) is carried out as 
described by Borthwick (1986). The result is the surface pressure distribution, apart 
from an arbitrary reference constant. Surface stresses are determined from the 
eauation 

(23) 
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components can now be found by integration ; 
The instantaneous dimensionless (by 0.5pDU2,) in-line and transverse force 

F, = [psin0d0-- ie [ w cos 0d0. (24b) 

Notice that the pressure and friction parts of the forces can be found separately. 
When the flow is symmetric, F, vanishes by definition. 

3.4. Implementation 

Initially the code was implemented on an Amdahl VP1100 in vectorized Fortran, but 
it was later transferred to  an IBM PS/2 model 70-121 using Fortran under 05/22. The 
majority of the results given in this paper has been obtained on this machine. 

4. Flow-visualization experimental method 
Flow visualizations were conducted in a water tank with a working section 0.8 m 

high and 0.6 m wide. The model cylinder was mounted vertically from a horizontal 
Perspex plate which was supported by a horizontal carriage system resting on the 
tank walls. The oscillatory flow was created by driving the carriage in the horizontal 
direction thereby oscillating the cylinder in the otherwise still water. 

The carriage was driven by a steel bar eccentrically attached to  a flywheel which 
in turn was driven by an electric motor via a short strap. The carriage could attain 
oscillation amplitudes of 0.032 < a 6 0.048 m. 

The so-called aluminium powder technique was used to visualize the water 
movements. The water surface was illuminated by light sources around the tank and 
photographed using a Nikon motordrive camera at regular, preset time intervals 
using a special timing device developed by the Danish Hydraulic Institute. For the 
pictures shown in this paper, the camera was fixed to the carriage such that the 
cylinder would remain stationary in the picture frame of reference. This allowed for 
a good representation of the boundary layers and the flow near the cylinder a t  the 
expense of reducing the far-field flow to essentially being the ambient flow. 

Two cylinders with diameters 0.090 m and 0.050 m were used for KC = 2.2 and 
KC = 4.0, respectively. In  both cases, /3 was 250. 

5. Initial validation of the model 
I n  order to check the implementation of the mathematical model on the computer, 

an initial study of impulsively started flow around a circular cylinder was carried out. 
The initial development of this flow a t  Re = 3000 has been studied experimentally by 
Bouard & Coutanceau (1980) and numerically by Ta Phuoc LOC & Bouard (1985) and 
Smith & Stansby (1988). These studies have shown good agreement between 
calculations and flow visualizations. 

A run was made for Re = 3000 using N = 128 points in the &direction andM = 80 
points in the z-direction with an external radius of R, = 80 and a straining 
parameter of a = -0.94. The time step was At = 0.001. Figure 3 shows the calculated 
development of the separated flow behind the cylinder a t  five time instant during the 
initial stages of the flow in which it may be assumed to be symmetrical, and 
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FIGURE 3. Impulsively started flow around a circular cylinder at Re = 3000. The development of 
the separation zone behind the cylinder is depicted fort = 1,2,3,4 and 5. (a) Present computations 
visualized by stream-function contours. ( b )  Flow visualization experiment by Bouard & Coutanceau 
(1980). 

turbulence is not important. The agreement between calculated and observed flow 
field is seen to be excellent. To get a quantitative check of the results from the present 
code, the reattachment length has been plotted as a function of time in figure 4. The 
figure also shows results from the other studies. The results from all three numerical 
models and the experiments show good accordance. 
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FIGURE 4. Impulsively started flow around a circular cylinder at Re = 3000. The reattachment 
length normalized by the cylinder radius as a function of time. 0,  Present computations; 0, 
computations by Ta Phuoc LOC & Bouard (1985); A, computations by Smith & Stansby (1988); 
0,  experiments by Bouard & Coutanceau (1980). 

t 
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6. Results 
6.1. General 

The results will be presented in this section, starting with an investigation of the 
onset of separation and asymmetrical flow. Then the symmetrical flow regime will be 
studied in terms of flow fields and force coefficients. In the vortex shedding regime, 
a number of cases representing different modes of vortex shedding will be studied in 
detail, and finally force coefficients will be presented for the entire interval 0 < 
KC < 26 for ,8 = 196. 

The numerical accuracy has been investigated by varying the temporal and spatial 
resolution as well as the straining in the mesh governed by the parameter a,  cf. (8). 
It has been found that the most important parameter is the straining parameter. It 
is vital to resolve the flow in the boundary layer, especially in the oscillatory flow in 
which the large inertia forces must be accommodated for by large gradients in the 
vorticity near the cylinder surface, cf. (22). As guidance, we have used the boundary- 
layer thickness of the oscillatory boundary layer over a flat plate (Stokes’ second 
problem) given by (see Rosenhead 1963) 

6 = ( 7 c / , 8 ) t  (25) 

This flow has a close resemblance with the present flow. 
Typically 128 circumferential points and 80 radial points were used. The time step 

was varied between At = 0.001 and At = 0.005. The straining parameter was 
a = -0.94 for KC < 6 and a = -0.50 for KC 2 6. R, = 80 in all simulations. Cases 
where the numerical parameters deviate from these will be noted. 

6.2. Inception of separation and asymmetrical f i w  

Before we can present the results for inception of separation and asymmetrical flow, 
a short summary of the various phenomena and their related KC- dependency must 
be given. For a more comprehensive discussion the reader is referred to e.g. Sarpkaya 
(1986). 

- 
I 
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Below a certain threshold value of KC, KC,, the flow remains stable to external 
disturbances and will remain symmetrical. When this KC is exceeded, the flow is 
unstable and will become asymmetrical when an external disturbance is introduced. 
In physical experiments such disturbances will always be present, and the flow will 
be asymmetrical at KC values larger than KC,. In the calculations, the flow may 
remain symmetrical above this threshold value for KC unless an artificial disturbance 
is introduced. This is because the inevitable numerical dispersion will dampen out 
any perturbations that could be generated by, e.g. the solution algorithm itself 
(biased sweep directions in the AD1 method etc.). Experiments with the present code 
have shown that the numerical damping is sufficiently small that asymmetrical flow 
conditions will develop eventually without artificial triggering. In order to enhance 
the process, however, we have used the method devised by Martinez (1979) and later 
used by Braze et al. (1986) for inducing an external disturbance. The cylinder is 
rotated axially in one direction for a period of time followed by a period of rest and 
a second rotation in the opposite direction. 

The asymmetry instability discussed above governs the formation of vortices in 
the wake of the cylinder, and it must not be confused with the Honji instability 
(Honji 1981; Sarpkaya 1986) which leads to axially periodic vortices. The Honji 
instability begins at a critical value KC,, which has been found analytically by Hall 
(1984). For ,8 = 196, his solution gives KC,, = 1.63. Owing to their intrinsic three- 
dimensionality these periodic vortices are out of reach of the present two-dimensional 
model. 

According to Sarpkaya (1986), the flow in the boundary layers becomes turbulent 
at KC, x 2.8, x 2.3 and z 1.8, for the respective p-values 196, 483, and 1035 (his 
figure 7). These KC-values are indicative of the maximum KC at which the present 
laminar code can fully resolve the flow. For KC slightly larger than these values it 
will be assumed that the flow is only turbulent in parts of the oscillation cycle or in 
the wake, such that the boundary-layer separation is predominantly laminar. 

Separation in relation to the present flow shall be defined as separation in the shear 
layers with the mathematical definition that the wall shear vanishes. In laminar flow, 
the normal gradient of the tangential velocity will also vanish at  a point in which the 
wall shear is zero. This definition will imply a breakaway of the surface streamline 
at  the separation point. 

6.2.1. Flow separation 
Calculations have been done to study separation as a function of KC. The 

migration of the separation point, S,, as a function of the phase angle 9 is depicted 
in figure 5(a)  for a series of KC, all for p = 196. It is seen that in all cases separation 
occurs at the rear stagnation point at a certain phase angle. The separation point 
then migrates towards the top of the cylinder and eventually reaches the front 
stagnation point. This behaviour could be expected, since the rear stagnation point 
is most susceptible to the effects of the adverse pressure gradient due to the cylinder 
geometry, which we shall denote PG. 

The phase angle at which separation is initiated varies with the KC. At KC = 2, 
separation initiates at 9 x 75'. As KC is lowered, the initiation of separation is 
delayed, and when KC = 0.2, the angle is 9 x 128'. The physical explanation for this 
can be found by analogy with an impulsively started flow past a cylinder. Here the 
flow does not separate instantly, because Pc requires time to reverse the flow close 
to the wall against the external flow direction. The necessary time interval is a 
function of the time history of the flow. Here it is well known that separation starts 
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FIQURE 5. Position of the separation point, O,, as a function of the phase angle, q5, for B = 196. (a) 
-, KC = 0.2; ----, 0.5; ----, 1.0; ----, 1.5;----, 2.0. Numbered large dots 
indicate points for which flow pictures are given in figure 6. ( b )  Grid refinement study: --, 

At = 0.001. 
1 2 8 ~  80, At = 0.0025; .. ' ,  64 ~ 4 0 ,  At = 0.005; ---, 1 2 8 ~  80, At = 0.001; ---, 2 5 6 ~  120, 

after the cylinder has moved some distance si = 0.1750. For a uniformly accelerated 
cylinder the corresponding distance is s, = 0.260. As KC increases, so does the 
amplitude of oscillation, and hence separation will occur earlier in a half-period. 

A tempting suggestion would then be to find a limiting KC,  KC,, below which the 
flow remains unseparated in all phases. If the oscillatory flow is assumed to accelerate 
uniformly, s, would correspond to KCs = 1.63. Inspecting figure 5 ( a )  we see that 
even at  KC = 0.2 separation occurs, and therefore KC, is much lower than 1.63, at  
least for p = 196. The explanation is that the flow can be assumed to accelerate 
uniformly only in a small part of the cycle, but much more important is that the 
presence of an external pressure gradient PE in oscillatory flow causes a reversal of 
the entire flow twice every period. 

From the theory for the oscillatory boundary layer over a flat plate, Stokes' second 
problem, it is known that the reversal of the wall shear stress occurs a t  q5 = 135", i.e. 
the wall shear leads the external velocity by 45". Furthermore, the leading term for 
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FIGURE 6. Computed flow fields for KC = 1 and B = 196. Stream-function contours, ~,,,,, = -0.05, 
$m8x = 0.05, A~ = 0.005. The separation points are marked with an S. ( i )  q5 = 90'; (ii) 112.5'; ( i i i )  
135'; (iv) 157.5' (see figure 5a) .  

the friction force in the theory by Wang (1968) which is valid for KC < 1 also gives 
a reversal of the wall shear at 135". It may therefore be expected that in the limit 
as KC tends to  zero the reversal of the wall shear stress will occur almost 
simultaneously over the entire cylinder. In  the model we see this as the separation 
point moving from the rear stagnation point to the front stagnation point at # - 
135". From a physical point of view it can be argued that as KC+O the flow 
amplitude will become so small (with respect to the cylinder diameter) that the flow 
will not be able to feel the geometry of the wall below i t ,  whether the wall is a cylinder 
surface or a flat plate, i.e. PE becomes much more important than PG. Thus the 
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B 
FIGURE 7 .  Inception of asymmetrical flow. +, Inception of asymmetrical flow computed by 
the present code; error bar indicates the lower and upper limits, i.e. the flow is found to be stable 
at the lower limit and found to be unstable at the upper limit. 

separation phenomenon will lead to simultaneous flow reversal over the entire 
cylinder surface. The results in figure 5 ( a )  indicate such a trend. 

No attempt has been made in the present study to investigate the approach to 
simultaneous flow reversal. This is because the numerical solution becomes more 
difficult to obtain in this region owing to the fast oscillations. 

In order to illustrate the flow fields and further support the arguments above, we 
have depicted a series of flow pictures in the form of stream-function contours in 
figure 6 for KC = 1 and t9 = 196. The four pictures show the progressive development 
of separation followed by flow reversal. The time instances for the four pictures are 
marked on figure 5 ( a )  for easy reference. 

Experiments reported by Sarpkaya (1986) suggest that the onset of separation 
occurs in the interval 1.5 < KC < 3, depending somewhat on P. The previous results 
show that separation, according to the present definition, has already occurred at 
much lower KC,  a t  least in a two-dimensional flow. As noted by Sarpkaya (1986), the 
experimental determination of separation is subjective, owing to a number of 
difficulties associated with flow visualization. We think that, most likely, separation 
must develop up to a certain stage before it can be observed in the experiments. 

To investigate whether the chosen grid was fine enough to ensure that the effects 
of numerical viscosity were negligible, the case KC = 1 and = 196 was analysed 
with four different grids and time steps. The influence of discretization on the 
migration of the separation point is shown in figure 5(b ) .  It is seen that the chosen 
grid, indicated by a solid line, is sufficiently free from artificial viscosity for the 
results to be trustworthy. 

6.2.2. Asymmetrical flow inception 
In figure 7, a curve with 'error bars' shows the region in the (KC, P)-plane in which 

the flow becomes unstable and thus asymmetrical according to the present model. 
The bars do not indicate a standard deviation, but they show a lower and an upper 
limit for the instability. We do not give precise values for KC,, because its 
determination is based on the inspection of the temporal growth of the transverse 
force on the cylinder. The computations would have to be carried out for very long 
time intervals to obtain a very accurate threshold value. Furthermore, this value 
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FIQURE 8. Force traces for /3 = 196. To introduce a disturbance in the flow, the cylinder has been 
rotated in the interval 2 < t < 2.5 with a velocity of V = 0.30 at the wall, and in the interval 2.75 
c t c 3.25 with a velocity V = -0.20. -, In-line force; ----, lift force. (a) KC = 3; (b )  

KC = 4. 

would be affected by the numerical viscosity. An example of the computed force 
traces for a perturbed flow (KC = 3, B = 196) is given in figure 8(a) .  It is seen how the 
lift force attains very large values while the disturbances are applied. Later, the lift 
force dampens out, and we conclude that in this particular case, the flow is stable. 
Figure 8 ( b )  shows an unstable case (KC = 4,B = 196). 

Little is known from experiments about KC, and its functional behaviour with B. 
Williamson (1985) and Obasaju, Bearman & Graham (1988) have reported that 
asymmetrical flow is initiated at KC, x 4. The observations are based on flow 
visualizations and transverse force measurements. 

6.3. Symmetrical JEow 
This section will deal with the computed flow fields and forces on the cylinder in the 
region 0 < KC < KC,, where we can consider the flow to be symmetrical, as shown 
in the previous section. 

6.3.1. Flow jields 
In this section we shall compare computed flow fields with flow visualization 

experiments that were carried out to provide flow pictures at small KC and small Re 
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FIGURE 9. KC = 2.2, = 250. (a) Computed instantaneous contours of the stream function, $; 
$,,,," = -0.5, $,,,ax = 0.5, A$ = 0.01. (b )  Flow visualization. Five instances from one half-period are 
shown. 
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(b) 

FIGURE 10. KC = 4.0, /3 = 250. (a) Computed instantaneous contours of the stream function, @; 
$,,, = -0.5, $,= = 0.5, A$ = 0.01. ( b )  Flow visualizations. Four instances from one half-period 
are shown. 
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in a regime in which the model can give results which are fully or almost fully 
resolved. In these computations we have used 256 circumferential points and 180 
points in the radial direction, and a = -0.50, R, = 20. 

Figure 9 (a)  depicts five computed flow fields for KC = 2.2 and /3 = 250 during one 
half-cycle of oscillation. Isolines of the total stream function, $, are used to illustrate 
the instantaneous flow patterns, and only one side of the cylinder is shown. The 
corresponding flow visualization pictures are given in figure 9(b). The figure shows 
how a symmetrical pair of counter-rotating vortices is formed during the half-cycle. 
Two surviving eddies from the previous half-cycle are washed over the cylinder to 
form a pair of eddies rotating in the opposite direction compared with the newly 
formed ones. In  this case, the computations are confirmed by the visualizations. 

At KC = 4.0 and /3 = 250 the computations give the same qualitative results in 
terms of vortex formation and movements, as shown by the stream-function isolines 
in figure lO(a). Again good accordance with the visualizations in figure 10(b) is seen. 
Although the pictures show a weak asymmetry, we have included this case in the 
present section and compared the experimental results with a symmetrical 
computation. The results from both sources stem from the initial periods of 
oscillation. 

The pictures allow a quantitative comparison by considering the reattachment 
length as a function of time and KC. In  figure 11 we have depicted this length as a 
function of the phase angle, 9, for the two values of KC at /? = 250. The comparison 
shows that the temporal development of the separation bubble is well predicted by 
the code in both cases. We also note that the separation bubble becomes larger a t  
KC = 4 than at KC = 2.2, which was to be expected. 

Finally we compare flow pictures with the pictures obtained by Williamson (1985) 
for KC = 4 and presumably p = 1020. Figure 12 depicts the computed flow fields in 
terms of isolines of the ‘viscous’ part of the stream function, $,, which gives flow 
pictures in a frame of reference fixed relative to the water tank and thus the same 
as used by Williamson in his pictures. The computation indicates that the vortex 
movement is qualitatively the same as found for the lower p-value in our own 
visualizations, whereas Williamson’s pictures clearly show that in each half-cycle 
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(b) 

FIGURE 12. KC = 4.0, B = 1020. (a) Computed instantaneous contours of the viscous part of the 
stream function, $v; $,.,,," = -0.9, $v,,,, = 0.9, A$v = 0.01. (b )  Flow visualizations from 
Williamson (1985). 
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FIGURE 13. KC = 4.0, /? = 1020. Computed instantaneous contours of the vorticity, w ;  
w,,,, = -50, w,,, = 50, AW = 2. 
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FIQURE 14. Computed in-line force traces for KC = 2 and j3 = 483 during two periods of 
oscillations : -, total in-line force ; ----, pressure part of in-line force ; ---- , friction part 
of in-line force : . . . . * . , external velocity. 

two vortex pairs are formed and detached from the cylinder as the cylinder reverses 
direction. In  the first two pictures in figure 12 it can be seen that, in the computation, 
the eddies are washed over the cylinder as the flow is reversed and an interaction with 
the newly forming eddies on the opposite side of the cylinder takes place. It appears, 
however, that the strengths of the surviving eddies are not sufficient in order to 
detach the vortex pairs. Instead the pairs are forced behind the cylinder, which can 
be seen in the third picture. As the flow reverses direction, only the new vortices are 
washed over the cylinder again, thus closing the cycle. The vorticity plots in figure 
13 give another illustration of the vortex movements. 

The explanation for the discrepancy is likely to be found in the difference in Re 
between our experiments and that by Williamson. The reason why the model does 
not predict the difference must be explained by artificial viscosity, which will play 
a larger role as Re is increased, and the fact that the model has a poor resolution at 
higher Re. 

6.3.2. Forces 
As an example, the in-line force traces for KC = 2 and B = 483 are depicted in 

figure 14. The total force is almost sinusoidal because of the inertia forces, and it is 
dominated by the pressure forces. The friction force trace clearly shows a 45" lead 
over the external velocity as discussed in $6.2. 

A grid refinement study similar to the one reported in $6.2.1 confirmed the earlier 
result that the chosen grid is sufficient. 

We shall now reduce the computed forces to force coefficients. In steady flow (24a) 
and (24b) give the usual drag and lift coefficients, respectively. In  unsteady flows, 
there will be an inertia force acting on the cylinder in the flow direction due to the 
fluid acceleration. The inertia force is usually split into two parts : the Froude-Krylov 
force, which is due to the far-field pressure gradient; and the inertia force due to 
'added mass' arising because of the local acceleration near the cylinder. Both 
contributions are included in F, as determined by (24a). It is desirable to separate the 
inertia and drag forces. In oscillatory flow it is usual to describe the in-line force by 
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the Morison equation (Morison et al. 1950) which assumes that the force per unit 
length is given as a linear sum of the inertia and drag forces as 

1L 

A T7* 

In dimensionless form we have 

Inertia coefficients and drag coefficients due to pressure and friction may be 
determined by the usual least-square-fit method or Fourier averaging, which are well 
known from the processing of experimental force time series. 

The choice of ,&values for which force coefficients will be presented in the following 
has been governed by the available experimental data. Figures 15-17 depict drag and 
inertia coefficients for /3 = 196, 483 and 1035, respectively. From figure 15 it is seen 
that for p = 196 the computed coefficients for KC < 1.5 are in excellent agreement 

FIQURE 15. Force coefficients as a function of KC for = 196. 0 ,  Present code; *, discrete vortex 
method by Graham & Djahansouzi (1989); A, experiments by Bearman et al. (1985); -, 
asymptotic theory by Wang (1968). (a) Drag coefficient; ( b )  inertia coefficient. 
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FIQIJRE 16. Force coefficients aa a function of KC for B = 483. 0 ,  Present code ; +, discrete vortex 
method by Graham & Djahansouzi (1989) ; 0, discrete vortex method by Stansby & Smith (1989) ; 
A, experiments by Bearman et al. (1985); 0, experiments by Sortland (1980); -, asymptotic 
theory by Wang (1968). (a) Drag coefficient; (b) inertia coefficient. 

with the analytical theory by Wang (1968), which is an asymptotic theory that 
assumes attached flow and is valid for KC -g 1 and p % 1. As KC is increased, C,  
decreases but departs from Wang's solution owing to the increasing effects of flow 
separation in the boundary layers and the formation of eddies, cf. for example figures 
10 and 11. C,  reaches a minimum at KC - 3. The experimental values for C,  
(Bearman et al. 1985) are generally higher than both the present data and the theory 
by Wang. A possible explanation is the absence of the Honji instability in the model. 
The drag coefficients obtained by Graham & Djahansouzi (1989) from a discrete- 
vortex model are also larger than the present ones. Since the bases for both numerical 
models are similar, this discrepancy must be related to the numerical methods. 
Figure 15(b) show a very good agreement between computed and experimental 
values of C,. The decrease from the Wang solution as KC is increased is very well 
predicted. 

For /3 = 483, C,  is slightly underpredicted by the code compared to the theory by 
Wang, cf. figure 16(a). The behaviour of the model results in relation to the 
experimental data provided by Bearman et al. (1985) and Sortland (1986) is similar 
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to that found for /3 = 196. The agreement with the discrete-vortex method results by 
Graham & Djahansouzi (1989) is much better than in the case /3 = 196. The discrete- 
vortex-method results by Stansby & Smith( 1989) give somewhat higher values for 
C,. The reason for the latter discrepancy is not known. The calculated C,-values 
(figure 16b) agree very well with those found by Stansby & Smith (1989). The 
experimental values for C ,  from Bearman et al. (1985) and Sortland (1986) are 
respectively below and above the theoretical predictions. 

Figure 17 shows drag and inertia coefficients for /3 = 1035 and includes the present 
computational data together with data from Stansby & Smith (1989) and 
experimental data by Sarpkaya (1986). The results are similar to those found for 
/3 = 483. In  figure 17(a),  the experimental data show, as noted by Sarpkaya, the 
inception of the Honji instability at KC,, - 0.75 which leads to an increase of C,. 
This effect is not-and should not be expected to be-captured by the two- 
dimensional models. A t  /3 = 1035, Sarpkaya (1986) has found that the onset of 
turbulent flow occurs at KC, - 1.8. Therefore, model results for larger values of /3 are 
not fully resolved. 

To close this section we present in figure 18 the drag coefficient for /3 = 196 as in 

FIGURE 17.  Force coefficients as a function of KC for /!? = 1035. 0,  Present code; 0,  discrete vortex 
method by Stansby & Smith (1989- ; + , experiments by Serpkaya (1986) ; -, asymptotic theory 
by Wang (1968). (a) Drag coefficient ; (b) inertia coefficient. 
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FIQURE 18. Drag coefficients as a function of KC for B = 196. 0,  Total drag by present code; 0, 
pressure drag by present code; -, total drag from asymptotic theory by Wang (1968); ---, 
pressure drag from asymptotic theorfbywang (1968). 

~ 

figure 15 (a) ,  but this time we have separated the pressure part of the drag, i.e. drag 
from the first term in (24a). It can be shown that the pressure and friction forces each 
account for half of the drag force in this regime. The figure shows that there is an 
excellent agreement between the asymptotic theory and the numerical model on this 
aspect. 

6.4. Vortex shedding regimes 
6.4.1. General 

As described in the introduction, the existence of some very distinct vortex 
shedding regimes for the oscillatory flow around a circular cylinder at small KC is 
now well established. Several experimental investigations have shown these vortex 
patterns (Maul1 & Milliner 1978; Bearman et al. 1981; Bearman 1985; Williamson 
1985). The theoretical study of these-patterns will, owing to their complexity, have 
to be made by numerical models. A few attempts have been reported in the literature 
(Stansby 1979 ; van der Vegt & de Boom 1985 ; Skomedal et al. 1989 ; Baba & Miayata 
1987; Murashige et al. 1989). The first three of these models were discrete vortex 
models, whereas the last two were Eulerian finite-difference models. Sarpkaya ( 1989) 
has given an excellent review and assessment, of especially, the vortex models. 

In the present work we have chosen to keep the Reynolds number relatively small 
(p = 196) in the study of the vortex patterns, such that the effects of transition and 
turbulence remain as small as possible. The highest KC-value that will be discussed 
is 26. Although the model can produce results for higher values, the investigation was 
stopped at this point, because the above-mentioned effects would become 
increasingly important and thus render the results less interesting. 

In the following we shall present and discuss the results that have been obtained 
for four different vortex shedding regimes encountered in the interval 7 < KC < 26. 
These are the ‘transverse street ’, the ‘single pair ’, ‘the double pair ’ and the ‘three 
pair’ regimes as classified by Williamson (1985). In each case we shall look at the 
computed flow fields and force traces over a period of oscillation. We shall refer to 
the first and second half-periods of oscillation, meaning respectively the time 
intervals 0 < q5 < x and x < q5 < 2x. In all calculations we have used the perturbation 
method described in $6.2 to initiate vortex shedding early in the calculation. 
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\- 

FIQURE 20. Computed vorticity contours for KC = 8 and = 196. Four instances a m  shown : 
(u-d) in; X ;  #n and 2n respectively. w,," = -5, w,,, = 5 and Aw = 0.1. 

6.4.2. Transverse street 
The first vortex shedding regime to be encountered in the asymmetrical flow for 

KC larger than E 7 is the so-called 'transverse street ', which takes its name from the 
fact that a pair of vortices generated in each cycle of oscillation advects away from 
cylinder in a direction almost perpendicular to the main flow direction. This one- 
sided vortex shedding gives rise to a non-zero mean transverse force (Bearman et al. 
1981 ; Williamson 1985). The present example is that of KC = 8 and fi = 196 for 
which this flow pattern has been found to be dominating. 

In figure 19 the flow fields, which are illustrated by velocity vectors and contours 
of the stream function, show how the vortices are generated and move to one side of 
the cylinder. The sketches show the centres of the main vortices and their direction 
of rotation. 

Owing to the action of viscosity the lifetime of the vortices is limited. Therefore we 
see a fast destruction of the vortices as they move away from the cylinder. Note that 
the influence of the numerical viscosity increases away from the cylinder since the 
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FIGURE 21. Computed force traces over one period of oscillation for KC = 8 and b =  196: 

grid spacing becomes larger and larger. Contour plots of the computed vorticity field 
as depicted in figure 20 also show that the vortices survive only for a few periods of 
oscillation. The very steep gradients in vorticity and thus the need for a very fine grid 
near the cylinder are seen clearly in figure 20. 

The mechanics of the transverse street, in which the cylinder constantly reverses 
into the wake which was formed in the prior half-period, and the resulting vortex 
pairing seen in figures 19 and 20 are in excellent agreement with the experimental 
observations made by several investigators at  KC x 8. See Williamson (1985) for a 
detailed description of the mechanics of the formation of this vortex pattern. 

As discussed by for example Maul1 & Milliner (1978) the shedding and return of the 
vortices create a very characteristic transverse force trace. In figure 21 the computed 
in-line and transverse force traces for KC = 8 are depicted together with the external 
velocity variation over one cycle of oscillation in which the transverse street 
shedding occurs. As would be expected from the experimental investigations, the 
frequency of the transverse force is two times the basic frequency of oscillation. 
Figure 21 also shows that the transverse force is larger in magnitude than the in-line 
force. 

6.4.3. Single pair 
The calculation for KC = 12 depicted in figure 22 may be interpreted as being in 

the so-called 'single-pair ' regime which, according to Williamson (1985), succeeds the 
transverse street, as KC is increased. Figure 22 reveals that the vortex street now 
forms an angle of roughly 45" with the main flow direction. This can be explained by 
the increased amplitude of oscillation caused by the larger KC. The vortex patterns 
are similar in principle, which may also be seen by comparison of figure 19 with figure 
22. As a result of the increased KC in figure 22, there is more time in each half-period 
for the creation of vorticity and hence the vortices are larger when the flow reversal 
occurs. Compare vortex C of figure 19 with vortex D of figure 22. The transition from 
the transverse street to the single-pair regime is not abrupt at  a critical value of KC, 
but must be considered to take place gradually in terms of the KC value, thus 
'turning ' the wake gradually from x 90" to x 45'. 
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FIQURE 23. Computed force traces over one period of oscillation for KC = 12 and j3 = 196; 
-, in-line force ; ---, transverse force ; . . . , external velocity. 

The force traces depicted in figure 23 are almost identical to those in figure 21 for 
KC = 8. The main difference is the smaller positive peak for the transverse force 
during the first half-period. Williamson (1985) has also found in his experiments that 
the peaks become uneven in size in the single-pair regime. The fundamental 
frequency of the transverse force is still two times the oscillation frequency, and the 
in-line and transverse forces are still similar in magnitude. 

In contrast to the experience from experiments (Williamson 1985; Obasaju et al. 
1988) which says that the transverse street and the single-pair regimes are very 
stable regimes that, once established, will remain for a number of periods, the present 
computations have not shown the same persistency. It is obvious that large 
secondary currents are present in the flow in order to compensate for the mass flux 
in the transverse street, thus making the interaction between the near-cylinder flow 
and the far-field large-scale flow very important. Perhaps this interaction is not 
sufficiently accounted for by the model. 

6.4.4. Double pair 
At a certain KC-value, the vortices D and E in figure 22 become so well developed 

during the second half-period that, after flow reversal, they are shed as a vortex pair 
and hence the ‘double-pair ’ regime is a reality. Here two pairs of vortices are shed 
during each cycle of oscillation. In figure 24 we have depicted the calculated flow field 
for KC = 18 and p = 196 at four instances during the first half-period. The flow is 
now ‘antisymmetric’ about the centre of the cylinder. It is seen how the surviving 
vortices M and N from the previous half-period form a pair that is shed and convects 
away at an angle of roughly 45’ to the main flow direction. During the next half- 
period, vortices 0 and P will do the same towards the lower left corner as the cylinder 
moves in the other direction. 

With four vortices being shed in each period of oscillation, the fundamental 
transverse force frequency is now three times the frequency of oscillation, as can be 
seen from the force traces depicted in figure 25. Also, a spectral analysis of the 
transverse force showed that the first and fifth harmonics were considerable in 
magnitude. Again we refer the reader to Williamson (1985) for a detail discussion of 
the relation between the vortex movements and the resulting forces. 
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FIGURE 25. Computed force traces over one period of oscillation for KC = 18 and B = 196; 
-. in-line force; ---, transverse force ; . . . , external velocity. 

FIGURE 26. Computed surface pressure distributions for KC = 18 and /3 = 196 at the same time 
instances as the flow fields in figure 24. The pressure is offset such tha t  the maximum negative 
pressure is equal in magnitude t o  the maximum positive pressure. The relative magnitude and 
direction of the resulting force is shown by a vector. 
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FIGURE 27. Computed flow fields for KC = 26 and = 196. (a) Stream-function contours; the 
cylinder is assumed to oscillate in still water, and the frame of reference is that of the still water; 
@ m i n = - 6  , @ mBx = 6 and A@ = 0.075. ( b )  Sketches showing the vortex patterns indicating vortex 
centres and direction of rotation in (a), the arrow in the lower right corner indicates the direction 
of the cylinder motion, and the position of the cylinder on the axis shows the time phase. Four 
instances from the first half-period are shown : in, in, in and x .  

Figure 26 shows the calculated distributions of surface pressure at four instances 
during the first half-period of oscillation. This pressure distribution is used for the 
force determination. 

In all the calculations performed during this investigation the double-pair vortex 
1-2 
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FIGURE 29. Computed in-line force traces over nine periods of oscillation at various KC-values for 
/3 = 196. The external velocity variation is depicted by the first curve. The equivalent transverse 
force traces may be found in figure 31. 
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FIGURE 30. Computed in-line force coefficients for /3 = 196. 0 ,  Present results ; A, experiments 
by Obasaju et al. (1988). (a) Drag coefficient ; ( b )  inertia coefficient. 

pattern has been shown to be the most stable and persistent flow pattern. Once it was 
established in a calculation it remained. As may be seen from the transverse force 
traces depicted together in figure 31, the pattern was found in the interval 14 < 
KC < 18, the same interval as in the various experimental investigations, almost 
independent of the Reynolds number in the subcritical range. 

6.4.5. Three pairs 
We have found that a transition from the double-pair regime to the ' three-pair ' 

regime occurs for KC somewhere between 20 and 24 for /3 = 196. The calculated flow 
fields for KC = 26 are depicted in figure 27. Now three pairs of vortices are formed 
in each period of oscillation. As may be deduced from figure 28, this gives rise to a 
fundamental transverse force frequency of four times the frequency of oscillation. 

The calculated flow pictures and force traces are in close agreement with those 
established in experiments (Williamson 1985 ; Obasaju et al. 1988). 
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FIGURE 31. Computed transverse force traces over nine periods of oscillation at various KC-values 
for /3 = 196. The external velocity variation is depicted by the first curve. The equivalent in-line 
force traces may be found in figure 29. 

6.5. Force coeficients for asymmetrical flow 
To complete the presentation of the results for asymmetrical flow in the interval 
4 < KC < 26, we shall look a t  the calculated forces and reduce these to the 
conventional drag and inertia coefficients. 

In  figure 29 we have depicted a number of in-line force traces for different KC 
values, all a t  p = 196. These force traces have been reduced to  drag and inertia 
coefficients as described in 56.3. The results are depicted in figure 30 together with 
force coefficients measured by Obasaju et al. (1988). A satisfactory agreement 
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FIQURE 32. Computed transverse force coefficients for /3 = 196. 0 ,  Present results; 
0, experiments by Maul1 & Milliner (1978) for /3 = 200. (a) cLms; ( b )  cLamp; (C) CL,,. 
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between the two sets of data can be observed. It should be noted that the values for 
C, and C ,  are very sensitive to the flow pattern realized a t  a particular KC lying in 
a range where several flow patterns may exist. I n  general the increase for C,  and 
corresponding decrease for C, a t  KC values for which a given flow pattern is 
dominant, and the opposite for KC values a t  which the flow pattern is intermittent, 
is well established by the computed force coefficients. 

Calculated transverse force traces are depicted in figure 31, again for p = 196. Such 
force traces are a useful guide to the flow patterns as described above and also, for 
example, by Williamson (1985). In this section we shall reduce the time series to force 
coefficients. Figure 32 gives computed r.m.s. values, maximum values and mean 
values for the transverse force coefficient as a function of KC.  All three coefficients 
are made dimensionless in the same way as F,, cf. (24b). These are compared with 
experimental data obtained by Maul1 & Milliner (1978) for /3 = 200. As it was 
mentioned previously, the forces are a strong function of the prevailing vortex 
patterns. This is especially true for the r.m.s. lift force depicted in figure 32(a). 
Therefore the agreement with the experimental data is not convincing. The 
comparison is much better for the maximum transverse forces shown in figure 32(b). 
The calculated mean forces depicted in figure 32(c) cannot be compared with any 
experimental data, but the parametric variation with KC is in accordance with the 
observations by Williamson (1985) as well as Bearman et al. (1981) and Obasaju 
et al. (1988). 

7. Conclusions 
From the results of the numerical study of the two-dimensional oscillating flow 

around a circular cylinder in the range 0 < KC < 26 we may conclude that:  (i) the 
numerical results agree closely with the asymptotic theory by Wang (1968) as KC + 
0;  (ii) as KC is decreased, flow separation degenerates to  global flow reversal in the 
boundary layer due to the external pressure gradient; (iii) the inception of 
asymmetrical now is determined as a function of /3; (iv) in the range 2 < KC < 26, a 
number of flow regimes have been simulated, and the computed flow fields are in 
accordance with experimental data;  (v) in the entire range O < K C <  26 good 
agreement between calculated and measured forces is found. 

Many of the salient features in the oscillating flow around a circular cylinder a t  low 
Reynolds number have been demonstrated in the present two-dimensional numerical 
computations. In order to achieve a more realistic model, however, all three 
dimensions must be included. Unfortunately both the present approach and the 
discrete vortex method cannot readily be extended to  three dimensions in their 
present form since that would require three components of the vorticity and a vector 
potential. 

The assistance rendered by Mr L.-C. Ekebjmg during parts of this study is 
gratefully acknowledged. The author benefited from discussions with Professor J. 
Fredscae and Associate Professor B. Mutlu Sumer. 
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